
1

Maurizio De Giorgi, Database Team
www.ebi.ac.uk

Database Migration: Challenges of
Migration from Oracle to Open

Source

European Bioinformatics Institute

2

Agenda
•Introduction

•The project

•Use cases: technical challenges and adopted solutions

•Tools

•Lesson learned

•Conclusions

•Q&A

3

What is EMBL-EBI?

• Europe’s home for biological data services,
research and training

• Part of the European Molecular Biology
Laboratory, an intergovernmental research
organization, non-profit

• Second largest of the six EMBL sites

• International: 600 members of staff from 57
nations

• Home of the ELIXIR Hub - a research
infrastructure for life science

4

EMBL-EBI Databases Team

• Technical Services Cluster provides central IT
support to over 50 “Customer” Teams at EMBL-EBI

• ~ 750 database instances

• ~ 800 TB of data

• Commercial: Oracle, MS SQL Server, Vertica

• Open Source: MySQL, PostgreSQL, MongoDB, Graph

• Concerns over large exposure to a feature rich but
expensive commercial database

5

The project

• Goal: Reduce the overall Oracle footprint
• ...and therefore scope is to provide:

• technical understanding of the porting challenges

•a methodology for any porting

• lessons learned (incl. best choice of DBMS)

• Target: ~30 Oracle instances

• Timeline: 1st phase Jan 2016 - July 2017

• 100% FTE

6

An aspect of the EMBL-EBI IT architecture

DR Primary Data Public
Facing

Prod Dev Test
Rel

QA

Pub
Fall
back

Pub

NFS T1 T2 T3

Oracle
VM

Oracle
VM

MySQL
VM

MySQL
VM

Any
VM
Any
VM

VMwareVMware

LANLAN SANSAN

NFS T1 T2 T3

Oracle
VM

Oracle
VM

MySQL
VM

MySQL
VM

Any
VM
Any
VM

VMwareVMware

LANLAN SANSAN

Backup

Data Copy Management

T1 SSD/Flash
T2 Hybrid Flash/Conventional Disks
T3 Conventional Disks

7

The Oracle Usage Survey 2014

Identify and map

• Teams, Users and Services using Oracle

• Number, size and importance of each database

• What features were in use and how critical they
were

• Teams/DB, DB/Features, DB/Users matrices

• Complexity, language and size of the code base

• Relationships among databases and with external
parties

• Release process, deployment model

• Level of activity, criticality

• Issues

8

•evaluate: features, returns, activity and criticality, effort
(complexity, code base, links, data size, dest. tech.)

•increase success rate, reduce potential damage & stress

•build-up momentum and experience incrementally

•maximize results, minimize effort
DB Retuns Features Critical Activity Willingness Effort Code Size GB Complexity Links

A 5 1 H/H High Low Medium Small 41 Medium 1

B 1 4 M/H Medium Medium Medium Small 12560 Low 3

C 2 1 L/H High High Large Small 100 Low 5

D 2 2 L/M Large Medium Medium Large 50 High 0

E 4 3 L/H Medium Low Medium Small 235 Low 2

F 3 2 M/H Medium High Large Small 8 Low 1

G 6 4 H/H High Medium High Small 105 Medium 3

H 4 1 M/M Low Medium High Large 10 Low 4

I 6 3 L/M Low High High Medium 143 Medium 2

Migrating ground & low hanging fruits

Periodic
Review

9

Some use cases: current status

DB Oracle
Net
GB

Gross
GB PostgreSQL MySQL MongoDB

Dest
GB Notes

Proteome 11gR2 401,4 128 9.5.8 ~33->646 ora2pg

Confluence 11gR2 182,4 84 9.5.8 3.4 ora2pg
Jira/FishEye 11gR2 122,4 59 9.5.8 1 ora2pg
Metabolights 11gR2 101,4 100 9.5.6 1 ora2pg

Expr. Atlas 11gR2 951,4 232 9.5.7 48 ora2pg
RT4 11gR2 762,4 130 9.5.7 28 ora2pg
UniRule 11gR2 82,4 3331 9.5.8 5 ora2pg
RNA Central 11gR2 1063,4 405 9.5.7 86 ora2pg
GVA 11gR1 493 1041 9.5.8 N/A ora2pg
InterPro DW 11gR2 ~400 1519 5.6.24 ~1165 Refactoring
SVA 11gR1 ~180001 ~20000 9.5.8? 3.4.7 ~2048 Refactoring

1 deprecated|obsolete data|objects removal
2 BLOB -> bytea|Attachments on FS
3 NVARCHAR2->VARCHAR|TEXT, 2->1 byte

4 CLOB -> TEXT (TOASTed)
5 +Elasticsearch
6 almost doubled in size in few months

10

Use cases:
technical challenges and adopted solutions

•Access to/from Oracle

•Dealing with 3rd party DB

•Loading files (POC & Multiple files)

•Porting PL/SQL to PL/pgSQL

•Partitioning & PEL

•InterPro DW: JSON to load MySQL and Elasticsearch

•Sequence Version Archive (ENA): Archiving in MongoDB

11

Access to/from Oracle

• Access to Oracle from Pg - oracle_fdw [Laurenz Albe]

•https://github.com/laurenz/oracle_fdw/issues/99

•new options (prefetch '1-10240', sample_percent '1-100')

•elapsed time reduced by 50-60% in test cases

•CTAS performance ~comparable with oracle to oracle

•caveat: variable push down/cross joins are poor (so far)

•workaround: push/get data into pre-allocated tables via fdw

•Access to Pg from Oracle - odbc (last resort solution)

•configuration, troubleshooting & performance not exceptional

•Substitute for Oracle Export (ad hoc) [Boris Bursteinas]

•generate DDL/CTL, CSV (java API copy manager) -> sql loader

https://github.com/laurenz/oracle_fdw/issues/99

12

• Jira: Migrating JIRA's data to a different type of database server

• FishEye: Migrating to an external database

• RT4: rt-validator --check && rt-serializer, rt-importer

All of the above with some effort worked well enough, RT4
required more effort and specific initial loading pg conf (wal
minimum)

• Confluence: vendor procedure Migrating to Another Database has
documented limitations that made it unsuitable for our case
(size >500MB, unsupported character set), used ora2pg,
export to file, encoding conversion, import to pg

Dealing with 3rd party DB

https://confluence.atlassian.com/adminjiraserver071/switching-databases-802592192.html#Switchingdatabases-differenttype
https://confluence.atlassian.com/fisheye/migrating-to-an-external-database-298976835.html
https://docs.bestpractical.com/rt/4.2.12/rt-validator.html
https://docs.bestpractical.com/rt/4.2.12/rt-serializer.html
https://docs.bestpractical.com/rt/4.2.12/rt-importer.html
https://confluence.atlassian.com/conf57/migrating-to-another-database-701435613.html
https://confluence.atlassian.com/doc/migrating-to-another-database-148867.html#MigratingtoAnotherDatabase-Limitationsofdatabasemigration

13

•Character set unsupported by Atlassian (US7ASCII)

•data with mixed encoding: in situ conversion last resort

•export table, assessment, conversion, checking, import

•file --mime..., iconv -f ${incs} -t ${outcs}..., python/bash

•LOBs cardinality/size large enough to:

•impact significantly on elapsed time (one-by-one processing)

•cause out of memory errors (batch processing)

•Assess max/avg/tot LOBs size and cardinality in Oracle

•“batch” mode for high cardinality/small LOBs memory usage⇑

•one-by-one for low cardinality/Very Large LOBs elaps. time⇑

Confluence: Character set conversion, LOBs

14

Confluence - Assessing LOBs max_len, tot_data, cardinality

-- query to generate actual query to run (tested with Oracle 11gr1, 11gr2)

select -- lob_num, lob_count, rownum,

 sql_text || case when lob_num = lob_count

 then ' order by lob_data_tot desc nulls last, row_count desc;'

 else ' union ' end sql_script

 from (select 'SELECT ''' || owner || '.' || table_name || '.' || column_name || ''' lob_col,' ||

 ' max (dbms_lob.getlength('||column_name||')) max_lob_len, '||

 ' sum (dbms_lob.getlength('||column_name||')) lob_data_tot, '||

 ' count (*) row_count ' ||

 ' FROM ' || owner ||'.'|| table_name sql_text,

 row_number () over (order by owner, table_name, column_name) lob_num,

 count (*) over () lob_count

 from dba_lobs

 where owner = '&&OWNER'

 order by owner, table_name, column_name);

15

Confluence - Assessing LOBs max_len, tot_data, cardinality

-- example query generated

SELECT '<OWNER>.<TABLE>.<LOB_COL>' lob_col, max (dbms_lob.getlength(<LOB_COL>)) max_lob_len,

 sum (dbms_lob.getlength(<LOB_COL>)) lob_data_tot, count (*) row_count

 FROM <OWNER>.<TABLE>

 union ...

 order by lob_data_tot desc nulls last, row_count desc;

-- example results obtained

LOB_COL|MAX_LOB_LEN|LOB_DATA_TOT|ROW_COUNT

<OWNER>.<TABLE>.<LOB_COL>|3899|2255591728|1292287

...

16

CSV file ~2.4M rec. load table with 4 varchar columns (50-255)

pgloader --root-dir .../reports/ --logfile pgloader.log .../cmdfile

1.drop/create table in BEFORE LOAD => 12.192s

a.no indexes/constraints exist

2.drop/create table in BEFORE LOAD => 28.417s

a.indexes/constraints creation in AFTER LOAD

3.truncate table (indexes/constraints in place) => 57.497s

a.default indexes/constraints maintenance during copy

4.truncate+drop indexes => 46.208s

a.indexes/constraints dropped in BEFORE LOAD

b.indexes/constraints parallel creation in AFTER LOAD

Loading files: POC

17

Loading files: multiple files in parallel
• LOAD CSV FROM all filenames matching ~<(.*).csv>

• Tuning params to balance performance/resource
consumption can require some time/effort
WITH truncate,

 batch rows = 500, batch size = 32MB, prefetch rows = 500,

 workers = 2, concurrency = 1

Total import 16529101 rows in 39m41.322s

• When hitting memory limits: rebuild from source

• http://pgloader.io/download.html

• simple when using bootstrap script

• make DYNSIZE=8192 pgloader

• Concatenate files makes tuning easier and more performing

• Disable/Enable autovacuum on table before/after load

http://pgloader.io/download.html

18

Porting PL/SQL to PL/pgSQL: challenges

Significant differences to address:

1. No concept of package ⇒ no globals

2. A procedure is part of an “outer” transaction and
every procedure called from another one is part of the
caller’s transaction

3. as a consequence no embedded commit is allowed

4. DDL are transactional while encapsulated within implicit
commits in Oracle

5. Embedded SQL is not “visible” at run time in
pg_stat_activity

6. Incompatible syntax

19

Porting PL/SQL to PL/pgSQL: an example

-- PL/SQL

prepare_releases(p_release_type);

FOR v_load IN c_load LOOP

 move_staging_data(p_in_dbid => v_load.dbid);

 load_release(p_in_dbid => v_load.dbid, p_in_load_release => v_load.id);

END LOOP;

verify_xref_id_not_null();

-- PL/pgSQL

perform rnc_update.prepare_releases(p_release_type);

FOR v_load IN c_load LOOP

 perform rnc_update.move_staging_data(p_in_dbid => v_load.dbid);

 perform rnc_update.load_release(p_in_dbid => v_load.dbid, p_in_load_release
=> v_load.id);

END LOOP;

20

Porting PL/SQL to PL/pgSQL: issue

Initial troubleshooting of errors, or mis-behaving
queries, happening deep in the call stack of a large,
long running transaction (perhaps containing DDL) is
difficult because:

• transaction is rolled back after the error

• actual data/structures needed are not there

• embedded SQL statements execution is not shown

• auto_explain, pg_stat_statement are quite useful
but only for statements that managed to complete!

21

Porting PL/SQL to PL/pgSQL: syntax
-- PL/SQL

MERGE INTO rnc_ref_map t1 USING

(SELECT t3.acc,t3.div,t4.id FROM load_rnc_refs t3, rnc_refs t4 WHERE t3.md5 = t4.md5) t2

 ON (t1.acc = t2.acc AND t1.ref_id = t2.id)

WHEN MATCHED THEN UPDATE SET t1.div=t2.div

WHEN NOT MATCHED THEN INSERT (t1.acc,t1.div,t1.ref_id) VALUES (t2.acc,t2.div,t2.id);

-- PL/pgSQL

insert into rnc_ref_map as t1 (acc, div, ref_id)

select t3.acc, t3.div, t4.id from load_rnc_refs t3 join rnc_refs t4 on (t3.md5 = t4.md5)

on conflict (acc, ref_id)

do update set div=excluded.div;

Plenty of info online to deal with incompatible syntax. MERGE
statements can be converted to INSERT ON CONFLICT but some
effort and tuning might be needed to refactor some complex query.

22

Porting PL/SQL to PL/pgSQL: update is not HOT!

-- PL/SQL originally in verify_xref_id_not_null()

UPDATE xref SET id = XREF_PK_SEQ.nextval WHERE id IS NULL;

-- PL/pgSQL as resulting after migration

UPDATE xref SET id = nextval('xref_pk_seq') WHERE id IS NULL;

The Heap Only Tuple (HOT) feature
eliminates redundant index entries and
allows the re-use of space taken by
DELETEd or obsoleted UPDATEd tuples
without performing a table-wide vacuum.
It does this by allowing single-page
vacuuming, also called defragmentation,
(index/constr. maintenance “lighter”)

-- to monitor HOT updates vs total updates
select n_tup_upd, n_tup_hot_upd from pg_stat_user_tables;

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob_plain;f=src/backend/access/heap/README.HOT;hb=HEAD

23

Porting PL/SQL to PL/pgSQL: solutions?

1.package⇒schema: pkg.proc⇒schema.proc
user defined custom variables (defaults in
postgresql.conf) or temp. tables for globals

2. rewrite as 1 proc ⇔ 1 trans when possible, invoke or
combine the procedure call with launcher or wrapper
in python/other language with commits where
required

3. same as above

4. same as above

5. extend code instrumentation

6. many examples online, use orafce or other
commercially available compatibility modules

24

Partitioning & PEL
• ora2pg can translate list/range partitioning well enough

• initial issue 18.1 list/list subpartitions wrongly translated
• fixed: https://github.com/darold/ora2pg/issues/334
• aim at using the latest ora2pg version
• alternative machine to install/test ora2pg fixes

• using inheritance, check constraints, triggers (9.5.X)
• it is limited but not all bad, some interesting aspects

• check if extensions can suit your case
• pg 10 introduce some declarative partitioning

• PEL needed a substantial rewrite

...and testing and troubleshooting needed time/effort

• do not forget: SET constraint_exclusion = on;

https://github.com/darold/ora2pg/issues/334

25

•Minor issues to fix immediately

•data types, suboptimal query performance

•failing query (oracle syntax, huge statements)

•Tuning

•autovacuum 20->5%, memory 4->8GB, work_mem

•locks, “idle in transaction”/waiting sessions

•Extensive logging, monitoring, alerts

•Trust-based relationship and quick channels of communication

Proteome - Managing post-migration

26

InterPro DW: JSON to load MySQL and Elasticsearch

Python/Django/cx_Oracle
Dynamic queries (2 DBs)
Range based batches
One output file per batch
Unload/load in parallel

NB: Example code used for loading in pg/cstore during initial tests

[Author: Gustavo Salazar]

27

Sequence Version Archive (ENA): Archiving in MongoDB

• Document model is a good match

•Searchable metadata + compressed sequence ‘files’

SVA & ENA Browser pipelines/services can be merged into one

Search/Retrieve/DML of entire doc./history, consistency is safe

GridFS or Object Store as file store (>16MB/always) ?

•Version tracking in multiple ways (oplog tailing, kafka?)

•Built-in HA (3-member replica set across multiple DCs)

•Built-in scalability based on sharding and compression

•Kafka to deal with long migration elapsed time and
new/old system temporary coexistence?

http://www.askasya.com/post/trackversions/
http://www.askasya.com/post/revisitversions/
http://www.askasya.com/post/bestversion/

28

Tools: ora2pg
ora2pg - http://ora2pg.darold.net/ - perl/DBI/DBD based

• Moves Oracle and MySQL database to PostgreSQL

• Mature, actively maintained [Gilles Darold]

• 2001 05 09 - Initial version 1.0

• 2017 09 01 - v18.2

• Report: very useful for surveying and estimates

• Very flexible, highly configurable, good defaults

• Wrapper scripts: export_schema.sh, import_all.sh

• Parallelism: table, jobs, indexes

• Character set conversion

• LOB support (NO_LOB_LOCATOR|LONGREADLEN+DATA_LIMIT)

http://ora2pg.darold.net/

29

Tools: ora2pg example report
p1/2

30

Tools: ora2pg example report
p2/2

31

Tools: pgloader vs pg_bulkload

pg_bulkload: http://ossc-db.github.io/pg_bulkload/index.html
• good mostly for MASSIVE INITIAL LOADING
• restrictions due to DIRECT writing into db files

• does not work properly in streaming replication environment

• bypasses some internal functionality such as WAL. needs separate
recovery procedure before usual PostgreSQL's recovery

pgloader: http://pgloader.io/index.html
• uses the COPY streaming protocol
• less performing but not so many restrictions
• lots of functionalities, parameters, including transformations
• can load various use cases/formats
• good results even with large files in different scenarios/formats
• well understood and accepted by users/developers
• can load single/multiple files in parallel

http://ossc-db.github.io/pg_bulkload/index.html
http://pgloader.io/index.html

32

Tools: outside the db
•DBeaver CE: Free Universal SQL Client https://dbeaver.jkiss.org/

IDE, sessions/locks checking, Eclipse/Plugins architecture

•SQL Workbench/J: free, DBMS-independent, cross-platform SQL

query tool (java) http://www.sql-workbench.net/

IDE, console mode, batch mode, CL commands (DataPumper, WbCopy, WbExport,

WbImport, WbSchemaDiff, WbDataDiff, WbGenerate*, WbList*, WbGrep*)

•pgAdmin 4: popular Open Source administration and development

platform for PostgreSQL (python) https://www.pgadmin.org/

IDE, administration, sessions/locks/performance dashboard

•Monitoring and troubleshooting performance

Nagios & MNTOS (Multi Nagios Tactical Overview System)

VMware tools (vSphere, vRops), Linux tools, OEM, Sql Developer

https://dbeaver.jkiss.org/
http://www.sql-workbench.net/
http://www.sql-workbench.net/manual/console-mode.html
http://www.sql-workbench.net/manual/using-scripting.html
https://www.pgadmin.org/

33

Statistic Collector: collection and reporting of server activity information
https://www.postgresql.org/docs/9.5/static/monitoring-stats.html

• Views: current state (pg_stat_activity, …) and collected statistics
(pg_stat_all_tables, pg_stat_all_indexes, pg_stat_user_functions, …)

-- Identify Idle in transaction/Waiting sessions
SELECT * FROM pg_stat_activity
WHERE (state_change < CURRENT_TIMESTAMP - INTERVAL '30' MINUTE
AND state = 'idle in transaction') OR waiting = 't';

• Functions:

-- Showing PIDs and current queries of all backends
SELECT pg_stat_get_backend_pid(s.backendid) AS pid,
 pg_stat_get_backend_activity(s.backendid) AS query

FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

pg_stat_statement: execution statistics, top consumers analysis
https://www.postgresql.org/docs/9.5/static/pgstatstatements.html

auto_explain: logging execution plans of slow statements automatically
https://www.postgresql.org/docs/9.5/static/auto-explain.html

Tools: inside pg

https://www.postgresql.org/docs/9.5/static/monitoring-stats.html
https://www.postgresql.org/docs/9.5/static/pgstatstatements.html
https://www.postgresql.org/docs/9.5/static/auto-explain.html

34

Error Reporting and Logging:
https://www.postgresql.org/docs/9.5/static/runtime-config-logging.html

log_min_messages (WARNING|ERROR)
log_min_duration_statement (0=all, int=ms)

Locks:
https://www.postgresql.org/docs/9.5/static/view-pg-locks.html

Starting from pg 9.6 also: select pg_blocking_pids ();
NB: IS NOT DISTINCT FROM essentially treat NULL as if it was a known value

Tools: inside pg

https://www.postgresql.org/docs/9.5/static/runtime-config-logging.html
https://www.postgresql.org/docs/9.5/static/view-pg-locks.html

35

• POC and testing are essential to choose the right tool
• Plan for finishing testing as closer as possible to switch
• Avoid last minute/untested changes before switch
• Timely detection/sharing of anomalies is crucial
• Allow plenty of logging capacity during first days/weeks
• Collaboration & communications are valuable and critical
• SMART goals, tracking, periodic review are a must

Lesson Learned

36

Conclusions
•Year 1 concluded: 38 instances successfully migrated

•Lots of challenges/solutions, a lot of work!

•PL/SQL has been the main hurdle so far in terms of effort

•Still looking at how improve monitoring of wait events
and embedded SQL in PL/pgSQL

•PostgreSQL has proven reliable, performant, well
supported and documented: looking forward to pg 10!

•The same for ora2pg, pgloader, oracle_fdw and the IDEs

•Interesting opportunity with MySQL/MongoDB for
specific use cases when refactoring

37

Q & A
•Further info about EMBL-EBI: www.ebi.ac.uk

•Please get in touch:
•[maurizio] at (ebi.ac.uk) - Myself

•[systems-dba] at (ebi.ac.uk) - DB team*

•Questions?

*DB Team contributors (Alessio, Andy, Jorge, Luis, Younes)

*Manuela Menchi (DB Team Coordinator - Sys. Apps)

http://www.ebi.ac.uk/

	Slide 1
	Agenda
	What is EMBL-EBI?
	EMBL-EBI Databases Team
	The project
	An aspect of the EMBL-EBI IT architecture
	The Oracle Usage Survey 2014
	Migrating ground & low hanging fruits
	Some use cases: current status
	Use cases: technical challenges and adopted solutions
	Access to/from Oracle
	Dealing with 3rd party DB
	Confluence: Character set conversion, LOBs
	Confluence - Assessing LOBs max_len, tot_data, cardinality
	Slide 15
	Loading files: POC
	Loading files: multiple files in parallel
	Porting PL/SQL to pl/pgsql: differences
	Porting PL/SQL to pl/pgsql: an example
	Porting PL/SQL to pl/pgsql: issues
	Porting PL/SQL to pl/pgsql: syntax
	Porting PL/SQL to pl/pgsql: update is not HOT!
	Porting PL/SQL to pl/pgsql: solutions?
	Partitioning & PEL
	Proteome - Managing post-migration
	InterPro DW: JSON to load MySQL and Elasticsearch
	Sequence Version Archive (ENA): Archiving in MongoDB
	Tools: ora2pg
	Tools: ora2pg example report p1/2
	Tools: ora2pg example report p2/2
	Tools: pgloader vs pg_bulkload
	Tools: outside the db
	Tools: inside pg
	Tools: inside pg
	Lesson Learned
	Conclusions
	Q & A

